Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Trace Elem Med Biol ; 73: 127044, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936888

ABSTRACT

COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Selenium , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents , Dietary Supplements , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Minerals/therapeutic use , Selenium/therapeutic use , Vitamin A , Vitamins/pharmacology , Vitamins/therapeutic use
2.
Sci Rep ; 12(1): 10852, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1908290

ABSTRACT

The recent outbreak of COVID-19 has increased hospital admissions, which could elevate the risk of nosocomial infections, such as A. baumannii and P. aeruginosa infections. Although effective vaccines have been developed against SARS-CoV-2, no approved treatment option is still available against antimicrobial-resistant strains of A. baumannii and P. aeruginosa. In the current study, an all-in-one antigen was designed based on an innovative, state-of-the-art strategy. In this regard, experimentally validated linear epitopes of spike protein (SARS-CoV-2), OmpA (A. baumannii), and OprF (P. aeruginosa) were selected to be harbored by mature OmpA as a scaffold. The selected epitopes were used to replace the loops and turns of the barrel domain in OmpA; OprF311-341 replaced the most similar sequence within the OmpA, and three validated epitopes of OmpA were retained intact. The obtained antigen encompasses five antigenic peptides of spike protein, which are involved in SARS-CoV-2 pathogenicity. One of these epitopes, viz. QTQTNSPRRARSV could trigger antibodies preventing super-antigenic characteristics of spike and alleviating probable autoimmune responses. The designed antigen could raise antibodies neutralizing emerging variants of SARS-CoV-2 since at least two epitopes are consensus. In conclusion, the designed antigen is expected to raise protective antibodies against SARS-CoV-2, A. baumannii, and P. aeruginosa.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Acinetobacter baumannii/metabolism , Epitopes , Humans , Pseudomonas aeruginosa , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
3.
Int J Pept Res Ther ; 28(1): 33, 2022.
Article in English | MEDLINE | ID: covidwho-1826702

ABSTRACT

The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10346-1.

4.
Sci Rep ; 11(1): 23622, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1559938

ABSTRACT

Spike glycoprotein (Sgp) is liable for binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the host receptors. Since Sgp is the main target for vaccine and drug designing, elucidating its mutation pattern could help in this regard. This study is aimed at investigating the correspondence of specific residues to the SgpSARS-CoV-2 functionality by explorative interpretation of sequence alignments. Centrality analysis of the Sgp dissects the importance of these residues in the interaction network of the RBD-ACE2 (receptor-binding domain) complex and furin cleavage site. Correspondence of RBD to threonine500 and asparagine501 and furin cleavage site to glutamine675, glutamine677, threonine678, and alanine684 was observed; all residues are exactly located at the interaction interfaces. The harmonious location of residues dictates the RBD binding property and the flexibility, hydrophobicity, and accessibility of the furin cleavage site. These species-specific residues can be assumed as real targets of evolution, while other substitutions tend to support them. Moreover, all these residues are parts of experimentally identified epitopes. Therefore, their substitution may affect vaccine efficacy. Higher rate of RBD maintenance than furin cleavage site was predicted. The accumulation of substitutions reinforces the probability of the multi-host circulation of the virus and emphasizes the enduring evolutionary events.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Cluster Analysis , Humans , Markov Chains , Mutation , Protein Binding , Protein Domains/genetics , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL